文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

pytorch 膨胀算法实现大眼效果

2024-04-02 19:55

关注

论文:Interactive Image Warping(1993年Andreas Gustafsson)

算法思路:

以眼睛中心为中心点,对眼睛区域向外放大,就实现了大眼的效果。大眼的基本公式如下,

假设眼睛中心点为O(x,y),大眼区域半径为Radius,当前点位为A(x1,y1),对其进行改进,加入大眼程度控制变量Intensity,其中Intensity的取值范围为0~100。 

其中,dis表示AO的欧式距离,k表示缩放比例因子,k0表示大眼程度,xd,yd表示A点经过大眼变换后的目标点B的坐标。

当k=0时,目标点B与O点重合。

当k=1时,目标点B与A点重合。

当k<1.0时,目标点B的计算函数单调递增,眼睛放大。

当k>1.0时,目标点B的计算函数单调递减,眼睛缩小。

人眼半径求法,

根据眼睛左右2个关键点来计算大眼区域所在的半径Radius 

大眼程度Intensity求法,

根据图像分辨率,结合实际经验来计算大眼程度Intensity。

比如Intensity = 15*512*512/(width*height)

应用场景:

适用于任何球形局部形变的场景,比如大眼,比如嘴唇微笑。

代码实现:


import cv2
import math
import numpy as np
 
def big_eye_adjust_fast(src, PointX, PointY, Radius, Strength):
    processed_image = np.zeros(src.shape, np.uint8)
    processed_image = src.copy()
    height = src.shape[0]
    width = src.shape[1]
    PowRadius = Radius * Radius
 
    maskImg = np.zeros(src.shape[:2], np.uint8)
    cv2.circle(maskImg, (PointX, PointY), math.ceil(Radius), (255, 255, 255), -1)
 
    mapX = np.vstack([np.arange(width).astype(np.float32).reshape(1, -1)] * height)
    mapY = np.hstack([np.arange(height).astype(np.float32).reshape(-1, 1)] * width)
 
    OffsetX = mapX - PointX
    OffsetY = mapY - PointY
    XY = OffsetX * OffsetX + OffsetY * OffsetY
 
    ScaleFactor = 1 - XY / PowRadius
    ScaleFactor = 1 - Strength / 100 * ScaleFactor
    UX = OffsetX * ScaleFactor + PointX
    UY = OffsetY * ScaleFactor + PointY
    UX[UX < 0] = 0
    UX[UX >= width] = width - 1
    UY[UY < 0] = 0
    UY[UY >= height] = height - 1
 
    np.copyto(UX, mapX, where=maskImg == 0)
    np.copyto(UY, mapY, where=maskImg == 0)
 
    UX = UX.astype(np.float32)
    UY = UY.astype(np.float32)
 
    processed_image = cv2.remap(src, UX, UY, interpolation=cv2.INTER_LINEAR)
 
    return processed_image
 
image = cv2.imread("tests/images/klst.jpeg")
processed_image = image.copy()
PointX_left, PointY_left, Radius_left, Strength_left = 150, 190, 44, 19.78
PointX_right, PointY_right, Radius_right, Strength_right = 244, 194, 42, 19.78
processed_image = big_eye_adjust_fast(processed_image, PointX_left, PointY_left, Radius_left, Strength_left)
processed_image = big_eye_adjust_fast(processed_image, PointX_right, PointY_right, Radius_right, Strength_right)
cv2.imwrite("big.jpg", processed_image)

实验效果: 

到此这篇关于pytorch 膨胀算法实现大脸效果的文章就介绍到这了,更多相关pytorch 膨胀算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     807人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     351人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     314人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     433人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     221人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯