文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

opencv 傅里叶变换的实现

2024-04-02 19:55

关注

傅里叶变换

图像处理一般分为空间域处理和频率域处理。

空间域处理是直接对图像内的像素进行处理。

空间域处理主要划分为灰度变换和空间滤波两种形式。

频率域处理是先将图像变换到频率域,然后在频率域对图像进行处理,最后再通过反变换将图像从频率域变换到空间域。

理论基础

时间差,在傅里叶变换里就是相位。相位表述的是与时间差相关的信息。

在图像处理过程中,傅里叶变换就是将图像分解为正弦分量和余弦分量两部分,即将图像从空间域转换到频域。

数字图像经过傅里叶变换后,得到的频域值是复数。因此,显示傅里叶变换的结果需要使用实数图像(real image)加虚数图像(complex image),或者幅度图像(magnitude image)加相位图像(phase image)的形式。

因为幅度图像包含了原图像中我们所需要的大部分信息,所以在图像处理过程中,通常仅使用幅度图像。

如果希望先在频域内对图像进行处理,再通过逆傅里叶变换得到修改后的空域图像,就必须同时保留幅度图像和相位图像。

对图像进行傅里叶变换后,会得到图像中的低频和高频信息。

低频信息对应图像内变化缓慢的灰度分量。高频信息对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。

傅里叶变换的目的,就是为了将图像从空域转换到频域,并在频域内实现对图像内特定对象的处理,然后再对经过处理的频域图像进行逆傅里叶变换得到空域图像。

傅里叶变换在图像处理领域发挥着非常关键的作用,可以实现图像增强、图像去噪、边缘检测、特征提取、图像压缩和加密等。

Numpy实现傅里叶变换

Numpy模块中的fft2()函数可以实现图像的傅里叶变换。

实现傅里叶变换

Numpy提供的实现傅里叶变换的函数是numpy.fft.fft2(),它的语法格式是:

返回值 = numpy.fft.fft2(原始图像)

参数“原始图像”的类型是灰度图像,函数的返回值是一个复数数组(complex ndarray)。

经过该函数的处理,就能得到图像的频谱信息。

此时,图像频谱中的零频率分量位于频谱图像(频域图像)的左上角

image-20220604151713378

为了便于观察,通常会使用numpy.fft.fftshift()函数将零频率成分移动到频域图像的中心位置。

函数numpy.fft.fftshift()的语法格式是:

返回值=numpy.fft.fftshift(原始频谱) 

使用该函数处理后,图像频谱中的零频率分量会被移到频域图像的中心位置,对于观察傅里叶变换后频谱中的零频率部分非常有效。

对图像进行傅里叶变换后,得到的是一个复数数组。

为了显示为图像,需要将它们的值调整到[0, 255]的灰度空间内,使用的公式为:

像素新值=20*np.log(np.abs(频谱值))

用Numpy实现傅里叶变换,观察得到的频谱图像。

import cv2 
import numpy as np 
import matplotlib.pyplot as plt

img = cv2.imread('./img/hand1.png',0) 
f = np.fft.fft2(img) 
fshift = np.fft.fftshift(f) 
magnitude_spectrum = 20*np.log(np.abs(fshift)) 
plt.subplot(121) 
plt.imshow(img, cmap = 'gray') 
plt.title('original') 
plt.axis('off') 
plt.subplot(122) 
plt.imshow(magnitude_spectrum, cmap = 'gray') 
plt.title('result') 
plt.axis('off') 
plt.show() 

image-20220604152158301

实现逆傅里叶变换

注意: 如果在傅里叶变换过程中使用了numpy.fft.fftshift()函数移动零频率分量,那么在逆傅里叶变换过程中,需要先使用numpy.fft.ifftshift()函数将零频率分量移到原来的位置,再进行逆傅里叶变换

函数numpy.fft.ifftshift()是numpy.fft.fftshift()的逆函数,其语法格式为:

调整后的频谱 = numpy.fft.ifftshift(原始频谱)

numpy.fft.ifft2()函数可以实现逆傅里叶变换,返回空域复数数组。

它是numpy.fft.fft2()的逆函数,该函数的语法格式为:

返回值=numpy.fft.ifft2(频域数据)

函数numpy.fft.ifft2()的返回值仍旧是一个复数数组(complex ndarray)。

逆傅里叶变换得到的空域信息是一个复数数组,需要将该信息调整至[0, 255]灰度空间内,使用的公式为:

iimg = np.abs(逆傅里叶变换结果)

在Numpy内实现傅里叶变换、逆傅里叶变换,观察逆傅里叶变换的结果图像。

import cv2 
import numpy as np 
import matplotlib.pyplot as plt

img = cv2.imread('./img/hand1.png',0) 
f = np.fft.fft2(img) 
fshift = np.fft.fftshift(f)

ishift = np.fft.ifftshift(fshift) 
iimg = np.fft.ifft2(ishift) 

iimg = np.abs(iimg) 
 
plt.subplot(121), plt.imshow(img, cmap = 'gray') 
plt.title('original'), plt.axis('off') 
plt.subplot(122), plt.imshow(iimg, cmap = 'gray') 
plt.title('iimg'), plt.axis('off') 
plt.show()

image-20220604152633404

高通滤波示例

一幅图像内,同时存在着高频信号和低频信号。

滤波器能够允许一定频率的分量通过或者拒绝其通过,按照其作用方式可以划分为低通滤波器和高通滤波器。

傅里叶变换可以将图像的高频信号和低频信号分离。

通过对图像的频域处理,可以实现图像增强、图像去噪、边缘检测、特征提取、压缩和加密等操作。

在Numpy内对图像进行傅里叶变换,得到其频域图像。然后,在频域内将低频分量的值处理为0,实现高通滤波。最后,对图像进行逆傅里叶变换,得到恢复的原始图像。

import cv2 
import numpy as np 
import matplotlib.pyplot as plt 
img = cv2.imread('./img/hand1.png',0) 
f = np.fft.fft2(img) 
fshift = np.fft.fftshift(f) 
rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0 
ishift = np.fft.ifftshift(fshift) 
iimg = np.fft.ifft2(ishift) 
iimg = np.abs(iimg) 
plt.subplot(121), plt.imshow(img, cmap = 'gray') 
plt.title('original'), plt.axis('off') 
plt.subplot(122), plt.imshow(iimg, cmap = 'gray') 
plt.title('iimg'), plt.axis('off') 
plt.show() 

image-20220604153041900

OpenCV实现傅里叶变换

OpenCV提供了函数cv2.dft()和cv2.idft()来实现傅里叶变换和逆傅里叶变换

实现傅里叶变换

函数cv2.dft()的语法格式为:

返回结果=cv2.dft(原始图像,转换标识)

在使用该函数时,需要注意参数的使用规范:

函数cv2.dft()返回的结果与使用Numpy进行傅里叶变换得到的结果是一致的,但是它返回的值是双通道的,第1个通道是结果的实数部分,第2个通道是结果的虚数部分。

经过函数cv2.dft()的变换后,得到了原始图像的频谱信息。

此时,零频率分量并不在中心位置,为了处理方便需要将其移至中心位置,可以用函数numpy.fft.fftshift()实现。

例如,如下语句将频谱图像dft中的零频率分量移到频谱中心,得到了零频率分量位于中心的频谱图像dftshift。

dftShift = np.fft.fftshift(dft) 

经过上述处理后,频谱图像还只是一个由实部和虚部构成的值。要将其显示出来,还要做进一步的处理才行。

函数cv2.magnitude()可以计算频谱信息的幅度。该函数的语法格式为:

返回值=cv2.magnitude(参数1,参数2)

函数cv2.magnitude()的返回值是参数1和参数2的平方和的平方根,公式为:

image-20220604153537762

得到频谱信息的幅度后,通常还要对幅度值做进一步的转换,以便将频谱信息以图像的形式展示出来。简单来说,就是需要将幅度值映射到灰度图像的灰度空间[0, 255]内,使其以灰度图像的形式显示出来。

这里使用的公式为:

result = 20*np.log(cv2.magnitude(实部,虚部)) 
import numpy as np import cv2 img = cv2.imread('./img/hand1.jpg',0) dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT) print(dft) dftShift = np.fft.fftshift(dft) print(dftShift) result = 20*np.log(cv2.magnitude(dftShift[:, :,0], dftShift[:, :,1])) #两个参数,需要拆分通道print(result) 

用OpenCV函数对图像进行傅里叶变换,并展示其频谱信息。

import numpy as np 
import cv2 
import matplotlib.pyplot as plt

img = cv2.imread('./img/hand1.png',0) 
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT) 
dftShift = np.fft.fftshift(dft) 
result = 20*np.log(cv2.magnitude(dftShift[:, :,0], dftShift[:, :,1])) 
plt.subplot(121), plt.imshow(img, cmap = 'gray') 
plt.title('original'), plt.axis('off') 
plt.subplot(122), plt.imshow(result, cmap = 'gray') 
plt.title('result'), plt.axis('off') 
plt.show() 

实现逆傅里叶变换

在OpenCV中,使用函数cv2.idft()实现逆傅里叶变换,该函数是傅里叶变换函数cv2.dft()的逆函数。其语法格式为:

返回结果=cv2.idft(原始数据) 

对图像进行傅里叶变换后,通常会将零频率分量移至频谱图像的中心位置。如果使用函数numpy.fft.fftshift()移动了零频率分量,那么在进行逆傅里叶变换前,要使用函数numpy.fft.ifftshift()将零频率分量恢复到原来位置。

注意: 在进行逆傅里叶变换后,得到的值仍旧是复数,需要使用函数cv2.magnitude()计算其幅度。

用OpenCV函数对图像进行傅里叶变换、逆傅里叶变换,并展示原始图像及经过逆傅里叶变换后得到的图像。

import numpy as np 
import cv2 
import matplotlib.pyplot as plt

img = cv2.imread('./img/hand1.png',0) 
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT) 
dftShift = np.fft.fftshift(dft)

ishift = np.fft.ifftshift(dftShift) 
iImg = cv2.idft(ishift) 
iImg= cv2.magnitude(iImg[:, :,0], iImg[:, :,1]) # 计算幅度
plt.subplot(121), plt.imshow(img, cmap = 'gray') 
plt.title('original'), plt.axis('off') 
plt.subplot(122), plt.imshow(iImg, cmap = 'gray') 
plt.title('inverse'), plt.axis('off') 
plt.show() 

低通滤波示例

在一幅图像内,低频信号对应图像内变化缓慢的灰度分量。图像进行低通滤波后会变模糊。

image-20220604154405895

实现的中间步骤

rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
mask = np.zeros((rows, cols,2), np.uint8) # 二维的原因,有实部和虚部 
mask[crow-30:crow+30, ccol-30:ccol+30,:] = 1 

然后,将其与频谱图像进行运算,实现低通滤波。这里采用的运算形式是:

fShift = dftShift*mask

使用函数cv2.dft()对图像进行傅里叶变换,得到其频谱图像。然后,在频域内将其高频分量的值处理为0,实现低通滤波。最后,对图像进行逆傅里叶变换,得到恢复的原始图像。

import numpy as np 
import cv2 
import matplotlib.pyplot as plt 
img = cv2.imread('./img/hand1.png',0) 
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT) 
dftShift = np.fft.fftshift(dft)

rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
mask = np.zeros((rows, cols,2), np.uint8) 
#两个通道,与频域图像匹配 
mask[crow-30:crow+30, ccol-30:ccol+30,:] = 1 
fShift = dftShift*mask 
ishift = np.fft.ifftshift(fShift) 
iImg = cv2.idft(ishift) 
iImg= cv2.magnitude(iImg[:, :,0], iImg[:, :,1])

plt.subplot(121), plt.imshow(img, cmap = 'gray') 
plt.title('original'), plt.axis('off') 
plt.subplot(122), plt.imshow(iImg, cmap = 'gray') 
plt.title('inverse'), plt.axis('off') 
plt.show() 

image-20220604154752683

经过低通滤波后,图像的边缘信息被削弱了。

时域卷积 --> 频域乘积

到此这篇关于opencv 傅里叶变换的实现的文章就介绍到这了,更多相关opencv 傅里叶变换内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯