文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python实现快速傅里叶变换(FFT)

2023-01-31 01:57

关注

相关文章:傅立叶级数展开初探(Python)

这里做一下记录,关于FFT就不做介绍了,直接贴上代码,有详细注释的了:

import numpy as np
from scipy.fftpack import fft,ifft
import matplotlib.pyplot as plt
import seaborn


#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)
x=np.linspace(0,1,1400)      

#设置需要采样的信号,频率分量有180,390和600
y=7*np.sin(2*np.pi*180*x) + 2.8*np.sin(2*np.pi*390*x)+5.1*np.sin(2*np.pi*600*x)

yy=fft(y)                     #快速傅里叶变换
yreal = yy.real               # 获取实数部分
yimag = yy.imag               # 获取虚数部分

yf=abs(fft(y))                # 取绝对值
yf1=abs(fft(y))/len(x)           #归一化处理
yf2 = yf1[range(int(len(x)/2))]  #由于对称性,只取一半区间

xf = np.arange(len(y))        # 频率
xf1 = xf
xf2 = xf[range(int(len(x)/2))]  #取一半区间


plt.subplot(221)
plt.plot(x[0:50],y[0:50])   
plt.title('Original wave')

plt.subplot(222)
plt.plot(xf,yf,'r')
plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B')  #注意这里的颜色可以查询颜色代码表

plt.subplot(223)
plt.plot(xf1,yf1,'g')
plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r')

plt.subplot(224)
plt.plot(xf2,yf2,'b')
plt.title('FFT of Mixed wave)',fontsize=10,color='#F08080')


plt.show()

结果:这里写图片描述


2017/7/11更新

再添加一个简单的例子

# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import seaborn



Fs = 150.0;                 # sampling rate采样率
Ts = 1.0/Fs;                # sampling interval 采样区间
t = np.arange(0,1,Ts)       # time vector,这里Ts也是步长

ff = 25;                    # frequency of the signal
y = np.sin(2*np.pi*ff*t)

n = len(y)                  # length of the signal
k = np.arange(n)
T = n/Fs
frq = k/T                   # two sides frequency range
frq1 = frq[range(int(n/2))] # one side frequency range

YY = np.fft.fft(y)          # 未归一化
Y = np.fft.fft(y)/n         # fft computing and normalization 归一化
Y1 = Y[range(int(n/2))]

fig, ax = plt.subplots(4, 1)

ax[0].plot(t,y)
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Amplitude')

ax[1].plot(frq,abs(YY),'r') # plotting the spectrum
ax[1].set_xlabel('Freq (Hz)')
ax[1].set_ylabel('|Y(freq)|')

ax[2].plot(frq,abs(Y),'G')  # plotting the spectrum
ax[2].set_xlabel('Freq (Hz)')
ax[2].set_ylabel('|Y(freq)|')

ax[3].plot(frq1,abs(Y1),'B') # plotting the spectrum
ax[3].set_xlabel('Freq (Hz)')
ax[3].set_ylabel('|Y(freq)|')

plt.show()

这里写图片描述

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯