文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python关系图数据可视化效果有哪些

2023-07-04 16:20

关注

这篇文章主要介绍“Python关系图数据可视化效果有哪些”,在日常操作中,相信很多人在Python关系图数据可视化效果有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python关系图数据可视化效果有哪些”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

python关系图的可视化主要就是用来分析一堆数据中,每一条数据的节点之间的连接关系从而更好的分析出人物或其他场景中存在的关联关系。

这里使用的是networkx的python非标准库来测试效果展示,通过模拟出一组DataFrame数据实现四种关系图可视化。

其余还包含了pandas的数据分析模块以及matplotlib的画图模块。

若是没有安装这三个相关的非标准库使用pip的方式安装一下即可。

pip install pandas -i https://pypi.tuna.tsinghua.edu.cn/simple/pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple/pip install networkx -i https://pypi.tuna.tsinghua.edu.cn/simple/

分别将使用到的python模块导入到我们的代码块中,就可以开始开发了。

# Importing the matplotlib.pyplot module as plt.import matplotlib.pyplot as plt# Importing the pandas module and giving it the alias pd.import pandas as pd

这里为了避免中文乱码的情况,分别对字体和编码进行了统一化的设置处理。

plt.rcParams["font.sans-serif"] = ["SimHei"]plt.rcParams["axes.unicode_minus"] = False# Importing the networkx module and giving it the alias nx.import networkx as nx

这里我们采用了有向图的模式来进行演示,有向图也是在生产过程中最常用的一种可视化模式。

G = nx.DiGraph() # 创建有向图

初始化一个DataFrame数据对象作为关系图生成的数据来源。

data_frame = pd.DataFrame(    {        'A': ['1', '2', '3', '4', '5', '6'],        'B': ['a', 'b', 'c', 'd', 'e', 'f'],        'C': [1, 2, 3, 4, 5, 6]    })

1、随机分布模型

使用随机分布模型的生成规则时,生成的数据节点会采用随机的方式进行展示,生成的数据节点之间相对比较分散更容易观察数据节点之间的关系指向。

for i, row in data_frame.iterrows():    G.add_edge(row['A'], row['B'], weight=row['C'])pos = nx.random_layout(G)nx.draw(G, pos, with_labels=True, alpha=0.7)labels = nx.get_edge_attributes(G, 'weight')nx.draw_networkx_edge_labels(G, pos, edge_labels=labels)plt.axis('equal')plt.show()

通过matplotlib展示出图形效果如下,并且默认已经添加了数据权重。

Python关系图数据可视化效果有哪些

2、放射数据模型

放射状数据模型,顾名思义就是以一个数据节点为中心向周边以发散状的模式进行分布,使用数据节点指向多个节点的可视化展示。

缺点是如果数据不够规范的情况下会展示成一团乱麻的情况,需要经过特殊的可视化处理。

使用方法这里直接将上述随机分布模型的pos模型直接替换成下面的放射状数据模型即可。

pos = nx.spring_layout(G, seed=4000, k=2)

Python关系图数据可视化效果有哪些

3、其他模型

其余两种方式使用同样的方式将随机分布模型中pos模型进行替换即可实现,这里分别展示以下实现效果。

特征值向量模型

pos = nx.spectral_layout(G)

Python关系图数据可视化效果有哪些

图形边缘化分布模型

pos = nx.shell_layout(G)

Python关系图数据可视化效果有哪些

到此,关于“Python关系图数据可视化效果有哪些”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯