文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

PythonPandas处理CSV文件的常用技巧分享

2024-04-02 19:55

关注

Pandas处理CSV文件,分为以下几步:

读取Pandas文件

df = pd.read_csv(file_path, encoding='GB2312')
print(df.info())

注意:Pandas的读取格式默认是UTF-8,在中文CSV中会报错:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xd1 in position 2: invalid continuation byte

修改编码为 GB2312 ,即可,或者忽略encode转义错误,如下:

df = pd.read_csv(file_path, encoding='GB2312')
df = pd.read_csv(file_path, encoding='unicode_escape')

df.info()显示df的基本信息,例如:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3840 entries, 0 to 3839
Data columns (total 16 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   实验时间批次         3840 non-null   object 
 1   物镜倍数           3840 non-null   object 
 2   板子编号           3840 non-null   object 
 3   板子编号及物镜倍数      3840 non-null   object 
 4   图名称            3840 non-null   object 
 5   细胞类型           3840 non-null   object 
 6   板子孔位置          3840 non-null   object 
 7   孔拍摄位置          3840 non-null   int64  
 8   细胞培养基          3840 non-null   object 
 9   细胞培养时间(小时)     3840 non-null   int64  
 10  扰动类别           3840 non-null   object 
 11  扰动处理时间(小时)     3840 non-null   int64  
 12  扰动处理浓度(ug/ml)  3840 non-null   float64
 13  标注激活(1/0)      3840 non-null   int64  
 14  unique         3840 non-null   object 
 15  tvt            3840 non-null   int64  
dtypes: float64(1), int64(5), object(10)
memory usage: 480.1+ KB

统计列值出现的次数

df[列名].value_counts(),如df["扰动类别"].value_counts():

df["扰动类别"].value_counts()

输出:

coated OKT3                720
OKT3                       720
coated OKT3+anti-CD28      576
DMSO                       336
anti-CD28                  288
PBS                        288
Nivo                       288
Pemb                       288
empty                      192
coated OKT3 + anti-CD28    144
Name: 扰动类别, dtype: int64

直接绘制value_counts()的柱形图,参考Pandas - Chart Visualization:

import matplotlib.pyplot as plt
%matplotlib inline

plt.close("all")
plt.figure(figsize=(20, 8))
df["扰动类别"].value_counts().plot(kind="bar")
# plt.xticks(rotation='vertical', fontsize=10)
plt.show()

柱形图:

筛选特定列值

df.loc[筛选条件],筛选特定列值之后,重新赋值,只处理筛选值,也可以写入csv文件。

df_plate1 = df.loc[df["板子编号"] == "plate1"]
df_plate1.info()
# df.loc[df["板子编号"] == "plate1"].to_csv("batch3_IOStrain_klasses_utf8_plate1.csv")  # 存储CSV文件

注意:筛选的内外两个df需要相同,否则报错

pandas loc IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match).

输出,数据量由3840下降为1280。

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1280 entries, 0 to 1279
Data columns (total 16 columns):
 #   Column         Non-Null Count  Dtype  
---  ------         --------------  -----  
 0   实验时间批次         1280 non-null   object 
 1   物镜倍数           1280 non-null   object 
 2   板子编号           1280 non-null   object 
 3   板子编号及物镜倍数      1280 non-null   object 
 4   图名称            1280 non-null   object 
 5   细胞类型           1280 non-null   object 
 6   板子孔位置          1280 non-null   object 
 7   孔拍摄位置          1280 non-null   int64  
 8   细胞培养基          1280 non-null   object 
 9   细胞培养时间(小时)     1280 non-null   int64  
 10  扰动类别           1280 non-null   object 
 11  扰动处理时间(小时)     1280 non-null   int64  
 12  扰动处理浓度(ug/ml)  1280 non-null   float64
 13  标注激活(1/0)      1280 non-null   int64  
 14  unique         1280 non-null   object 
 15  tvt            1280 non-null   int64  
dtypes: float64(1), int64(5), object(10)
memory usage: 170.0+ KB

遍历数据行

for idx, row in df_plate1_lb0.iterrows():,通过row[“列名”],输出具体的值,如下:

for idx, row in df_plate1_lb0.iterrows():
    img_name = row["图名称"]
    img_ch_format = img_format.format(img_name, "{}")
    for i in range(1, 7):
        img_path = os.path.join(plate1_img_folder, img_ch_format.format(i))
        img = cv2.imread(img_path)
        print('[Info] img shape: {}'.format(img.shape))
    break

输出:

[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)
[Info] img shape: (1080, 1080, 3)

绘制直方图(柱状图)

统计去除背景颜色的灰度图字典

# 去除背景颜色
pix_bkg = np.argmax(np.bincount(img_gray.ravel()))
img_gray = np.where(img_gray <= pix_bkg + 2, 0, img_gray)
img_gray = img_gray.astype(np.uint8)

# 生成数值数组
hist = cv2.calcHist([img_gray], [0], None, [256], [0, 256]) 
hist = hist.ravel()

# 数值字典
hist_dict = collections.defaultdict(int)
for i, v in enumerate(hist):
    hist_dict[i] += int(v)

# 去除背景颜色,已经都统计到0,所以0值非常大,删除0值,观察分布
hist_dict[0] = 0

绘制柱状图:

fig, ax = plt.subplots(1, 1, figsize=(10, 8), facecolor='white')
ax.set_title('channel {}'.format(ci))
n_bins = 100
ax.bar(range(n_bins+1), [hist_dict.get(xtick, 0) for xtick in range(n_bins+1)])
ax.set_xticks(range(0, n_bins, 5))

plt.savefig(res_path)
plt.show()

效果:

到此这篇关于Python Pandas处理CSV文件的常用技巧分享的文章就介绍到这了,更多相关Pandas处理CSV文件内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯