文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

详解运行Python的神器Jupyter Notebook

2022-06-02 22:31

关注
目录

Jupyter Notebook

Jupyter项目是从Ipython项目中分出去的,在Ipython3.x之前,他们两个是在一起发布的。在Ipython4.x之后,Jupyter作为一个单独的项目进行开发和管理。因为Jupyter不仅仅可以运行Python程序,它还可以执行其他流程编程语言的运行。

Jupyter Notebook包括三个部分,第一个部分是一个web应用程序,提供交互式界面,可以在交互式界面中运行相应的代码。

上图是NoteBook的交互界面,我们可以对文档进行编辑,运行等操作。

主要的功能如下:

第二个部分就是NoteBook的文档了,这个文档存储了要运行的代码和一些描述信息。一般这个文档是以.ipynb的后缀进行存储的。

notebook文档是以json的形式存储的,并用base64进行编码。使用json的好处就是可以在不同的服务器中方便的进行数据的交互。

Notebook documents中除了可运行的代码文件,还可以存储说明等解释性内容,从而将代码和解释内容完美结合,尤其适合做学习笔记使用。

笔记本可以通过nbconvert命令导出为多种静态格式,包括HTML,reStructuredText,LaTeX,PDF等多种格式。

另外文档还可以方便的在网络上进行共享。

第三个部分就是代码运行的核心Kernels,通过不同的Kernels搭配,notebook可以支持运行多种程序。比如:Python,java,go,R,ruby,nodejs等等。

这些Kernels和notebook之间是以Json的形式通过MQ来进行通信的。

启动notebook server

有了文档之后,如果我们想要运行文档,需要启动notebook server。

jupyter notebook

默认情况下会开启下面的URL: http://127.0.0.1:8888

启动的时候还可指定要打开的.ipynb文件:

jupyter notebook my_notebook.ipynb

具体的notebook界面的操作这里就不多介绍了,基本上和普通的编译器差不多。大家可以自行探索。

notebook document 的结构

notebook中包含了多个cells,每个cell中包含了多行文本输入字段,可以通过Shift-Enter 或者工具栏中的播放按钮来执行其中的代码。

这里的cell有三种类型,分别是code cells,markdown cells和raw cells。

code cells

代码单元允许您编辑和编写新代码,并突出显示完整的语法和制表符。 您使用的编程语言取决于内核,默认内核(IPython)运行Python代码。

执行代码单元时,它包含的代码将发送到与笔记本关联的内核。 然后,从该计算返回的结果将在笔记本中显示为单元格的输出。 输出不仅限于文本,还有许多其他可能的输出形式,包括matplotlib图形和HTML表格(例如,在pandas数据分析包中使用的表格)。

我们看一个code cells的例子:


#%%

import numpy as np
my_arr = np.arange(1000000)
my_list = list(range(1000000))

每个单元格是以 #%% 来进行分隔的。

Ipython本身还支持多种富文本的展示格式,包括HTML,JSON,PNG,JPEG,SVG,LaTeX等。

Ipython提供了一个display方法,我们可以使用display来展示要呈现的对象:


from IPython.display import display

display(obj) 将会寻找这个对象所有可能的展示类型,并从中挑选一个最适合的类型进行展示,并将结果存储在Notebook文档里面。

如果你想展示特定类型的对象,那么可以这样:


from IPython.display import (
    display_pretty, display_html, display_jpeg,
    display_png, display_json, display_latex, display_svg
)

举个展示图片的例子:


from IPython.display import Image
i = Image(filename='../images/ipython_logo.png')
i
display(i)

上面的例子中i包含了一个Image对象,直接调用i即可展示,我们也可以显示的调用display(i)。

其他的富文本类型可以参考Image,使用方法都是类似的。

markdown cells

markdown是一种简介的标记语言,使用起来非常简单,使用范围非常广泛,所以notebook document也支持markdown的语法。

先看一个markdown cell的例子:


#%% md

```python
$ python
Python 3.6.0 | packaged by conda-forge | (default, Jan 13 2017, 23:17:12)
[GCC 4.8.2 20140120 (Red Hat 4.8.2-15)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> a = 5
>>> print(a)
5
```

markdown中的语法在notebook中都是可以用的。

还支持标准的LaTeX 和 AMS-LaTeX语法。

raw cells

原始单元格提供了一个可以直接写入输出的位置。 notebook不会对原始单元格中的内容进行计算。

以模块的形式导入Jupyter Notebooks

有时候我们希望以模块的形式导入Jupyter Notebooks,但是可惜的是,Jupyter Notebooks并不是一个标准的python程序,不过Python提供了一些钩子程序,让我们能够方便的进行导入。

首先,我们需要导入一些基本的API :


import io, os, sys, types

from IPython import get_ipython
from nbformat import read
from IPython.core.interactiveshell import InteractiveShell

接下来需要注册NotebookFinder到sys.meta_path:


sys.meta_path.append(NotebookFinder())

这个NotebookFinder就是定义的钩子。

我们看下NotebookFinder的定义:


class NotebookFinder(object):
    """Module finder that locates Jupyter Notebooks"""
    def __init__(self):
        self.loaders = {}

    def find_module(self, fullname, path=None):
        nb_path = find_notebook(fullname, path)
        if not nb_path:
            return

        key = path
        if path:
            # lists aren't hashable
            key = os.path.sep.join(path)

        if key not in self.loaders:
            self.loaders[key] = NotebookLoader(path)
        return self.loaders[key]

里面使用了两个重要的方法,find_notebook用来找到notebook,和NotebookLoader,用来加载notebook。

看下find_notebook的定义:


def find_notebook(fullname, path=None):
    """find a notebook, given its fully qualified name and an optional path

    This turns "foo.bar" into "foo/bar.ipynb"
    and tries turning "Foo_Bar" into "Foo Bar" if Foo_Bar
    does not exist.
    """
    name = fullname.rsplit('.', 1)[-1]
    if not path:
        path = ['']
    for d in path:
        nb_path = os.path.join(d, name + ".ipynb")
        if os.path.isfile(nb_path):
            return nb_path
        # let import Notebook_Name find "Notebook Name.ipynb"
        nb_path = nb_path.replace("_", " ")
        if os.path.isfile(nb_path):
            return nb_path

看下NotebookLoader的定义:


class NotebookLoader(object):
    """Module Loader for Jupyter Notebooks"""
    def __init__(self, path=None):
        self.shell = InteractiveShell.instance()
        self.path = path

    def load_module(self, fullname):
        """import a notebook as a module"""
        path = find_notebook(fullname, self.path)

        print ("importing Jupyter notebook from %s" % path)

        # load the notebook object
        with io.open(path, 'r', encoding='utf-8') as f:
            nb = read(f, 4)


        # create the module and add it to sys.modules
        # if name in sys.modules:
        #    return sys.modules[name]
        mod = types.ModuleType(fullname)
        mod.__file__ = path
        mod.__loader__ = self
        mod.__dict__['get_ipython'] = get_ipython
        sys.modules[fullname] = mod

        # extra work to ensure that magics that would affect the user_ns
        # actually affect the notebook module's ns
        save_user_ns = self.shell.user_ns
        self.shell.user_ns = mod.__dict__

        try:
          for cell in nb.cells:
            if cell.cell_type == 'code':
                # transform the input to executable Python
                code = self.shell.input_transformer_manager.transform_cell(cell.source)
                # run the code in themodule
                exec(code, mod.__dict__)
        finally:
            self.shell.user_ns = save_user_ns
        return mod

有了他们,我们就可以直接import我们自己编写的notebook了。

以上就是详解运行Python的神器Jupyter Notebook的详细内容,更多关于运行Python的神器Jupyter Notebook的资料请关注编程网其它相关文章!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯