文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

redis缓存中怎么实施数据淘汰策略

2024-04-02 19:55

关注

这篇文章将为大家详细讲解有关redis缓存中怎么实施数据淘汰策略,文章内容质量较高,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。

在 redis 中,允许用户设置最大使用内存大小通过配置redis.conf中的maxmemory这个值来开启内存淘汰功能,在内存限定的情况下是很有用的。

设置最大内存大小可以保证redis对外提供稳健服务。

redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略通过maxmemory-policy设置策略:

volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

no-enviction(驱逐):禁止驱逐数据

redis 确定驱逐某个键值对后,会删除这个数据并将这个数据变更消息发布到本地(AOF 持久化)和从机(主从连接)

LRU 数据淘汰机制

在服务器配置中保存了 lru 计数器 server.lrulock,会定时(redis 定时程序 serverCorn())更新,server.lrulock 的值是根据 server.unixtime 计算出来的。

另外,从 struct redisObject 中可以发现,每一个 redis 对象都会设置相应的 lru。可以想象的是,每一次访问数据的时候,会更新 redisObject.lru。

LRU 数据淘汰机制是这样的:在数据集中随机挑选几个键值对,取出其中 lru 最大的键值对淘汰。所以,你会发现,redis 并不是保证取得所有数据集中最近最少使用(LRU)的键值对,而只是随机挑选的几个键值对中的。

// redisServer 保存了 lru 计数器
struct redisServer {
...
unsigned lruclock:22; 
...
};
// 每一个 redis 对象都保存了 lru
#define REDIS_LRU_CLOCK_MAX ((1<<21)-1) 
#define REDIS_LRU_CLOCK_RESOLUTION 10 
typedef struct redisObject {
// 刚刚好 32 bits
// 对象的类型,字符串/列表/集合/哈希表
unsigned type:4;
// 未使用的两个位
unsigned notused:2; 
// 编码的方式,redis 为了节省空间,提供多种方式来保存一个数据
// 譬如:“123456789” 会被存储为整数 123456789
unsigned encoding:4;
unsigned lru:22; 
// 引用数
int refcount;
// 数据指针
void *ptr;

} robj;
// redis 定时执行程序。联想:linux cron
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
......

updateLRUClock();
......
}
// 更新服务器的 lru 计数器
void updateLRUClock(void) {
server.lruclock = (server.unixtime/REDIS_LRU_CLOCK_RESOLUTION) &
REDIS_LRU_CLOCK_MAX;
}

TTL 数据淘汰机制

redis 数据集数据结构中保存了键值对过期时间的表,即 redisDb.expires。和 LRU 数据淘汰机制类似,TTL 数据淘汰机制是这样的:从过期时间的表中随机挑选几个键值对,取出其中 ttl 最大的键值对淘汰。

同样你会发现,redis 并不是保证取得所有过期时间的表中最快过期的键值对,而只是随机挑选的几个键值对中的。

总结

redis 每服务客户端执行一个命令的时候,会检测使用的内存是否超额。如果超额,即进行数据淘汰。

// 执行命令
int processCommand(redisClient *c) {
......
// 内存超额

if (server.maxmemory) {
int retval = freeMemoryIfNeeded();
if ((c->cmd->flags & REDIS_CMD_DENYOOM) && retval == REDIS_ERR) {
flagTransaction(c);
addReply(c, shared.oomerr);
return REDIS_OK;
}
}
......
}
// 如果需要,是否一些内存
int freeMemoryIfNeeded(void) {
size_t mem_used, mem_tofree, mem_freed;
int slaves = listLength(server.slaves);
// redis 从机回复空间和 AOF 内存大小不计算入 redis 内存大小

mem_used = zmalloc_used_memory();
// 从机回复空间大小
if (slaves) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
redisClient *slave = listNodeValue(ln);
unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
if (obuf_bytes > mem_used)
mem_used = 0;
else
mem_used -= obuf_bytes;
}
}
// server.aof_buf && server.aof_rewrite_buf_blocks
if (server.aof_state != REDIS_AOF_OFF) {
mem_used -= sdslen(server.aof_buf);
mem_used -= aofRewriteBufferSize();
}
// 内存是否超过设置大小

if (mem_used <= server.maxmemory) return REDIS_OK;
// redis 中可以设置内存超额策略
if (server.maxmemory_policy == REDIS_MAXMEMORY_NO_EVICTION)
return REDIS_ERR; 

mem_tofree = mem_used - server.maxmemory;
mem_freed = 0;
while (mem_freed < mem_tofree) {
int j, k, keys_freed = 0;
// 遍历所有数据集
for (j = 0; j < server.dbnum; j++) {
long bestval = 0; 
sds bestkey = NULL;
struct dictEntry *de;
redisDb *db = server.db+j;
dict *dict;
// 不同的策略,选择的数据集不一样
if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM
{
dict = server.db[j].dict;
} else {
dict = server.db[j].expires;
}
// 数据集为空,继续下一个数据集
if (dictSize(dict) == 0) continue;
// 随机淘汰随机策略:随机挑选

if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_RANDOM ||
server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_RANDOM)
{
de = dictGetRandomKey(dict);
bestkey = dictGetKey(de);
}
// LRU 策略:挑选最近最少使用的数据

else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU ||
server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
{
// server.maxmemory_samples 为随机挑选键值对次数
// 随机挑选 server.maxmemory_samples个键值对,驱逐最近最少使用的数据
for (k = 0; k < server.maxmemory_samples; k++) {
sds thiskey;
long thisval;
robj *o;
// 随机挑选键值对
de = dictGetRandomKey(dict); 
// 获取键
thiskey = dictGetKey(de); 

if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU)
de = dictFind(db->dict, thiskey);
o = dictGetVal(de); 
// 计算数据的空闲时间
thisval = estimateObjectIdleTime(o);
// 当前键值空闲时间更长,则记录

if (bestkey == NULL || thisval > bestval) {
bestkey = thiskey;
bestval = thisval;
}
}
} 
// TTL 策略:挑选将要过期的数据

else if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_TTL) {
// server.maxmemory_samples 为随机挑选键值对次数
// 随机挑选 server.maxmemory_samples个键值对,驱逐最快要过期的数据
for (k = 0; k < server.maxmemory_samples; k++) {
sds thiskey;
long thisval;
de = dictGetRandomKey(dict);
thiskey = dictGetKey(de);
thisval = (long) dictGetVal(de);

if (bestkey == NULL || thisval < bestval) {
bestkey = thiskey;
bestval = thisval;
}
}
}
// 删除选定的键值对

if (bestkey) {
long long delta;
robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
// 发布数据更新消息,主要是 AOF 持久化和从机
propagateExpire(db,keyobj);
// 注意, propagateExpire() 可能会导致内存的分配, propagateExpire()
提前执行就是因为 redis 只计算 dbDelete() 释放的内存大小。倘若同时计算 dbDelete() 释放的内存
和 propagateExpire() 分配空间的大小,与此同时假设分配空间大于释放空间,就有可能永远退不出这个循环。
// 下面的代码会同时计算 dbDelete() 释放的内存和 propagateExpire() 分配空间的大小:
// propagateExpire(db,keyobj);
// delta = (long long) zmalloc_used_memory();
// dbDelete(db,keyobj);
// delta -= (long long) zmalloc_used_memory();
// mem_freed += delta;
/////////////////////////////////////////

// 只计算 dbDelete() 释放内存的大小
delta = (long long) zmalloc_used_memory();
dbDelete(db,keyobj);
delta -= (long long) zmalloc_used_memory();
mem_freed += delta;
server.stat_evictedkeys++;
// 将数据的删除通知所有的订阅客户端
notifyKeyspaceEvent(REDIS_NOTIFY_EVICTED, "evicted",
keyobj, db->id);
decrRefCount(keyobj);
keys_freed++; 
// 将从机回复空间中的数据及时发送给从机

if (slaves) flushSlavesOutputBuffers();
}
} 
// 未能释放空间,且此时 redis 使用的内存大小依旧超额,失败返回
if (!keys_freed) return REDIS_ERR; 
}
return REDIS_OK;
}

适用场景

下面看看几种策略的适用场景:

1、allkeys-lru: 如果我们的应用对缓存的访问符合幂律分布(也就是存在相对热点数据),或者我们不太清楚我们应用的缓存访问分布状况,我们可以选择allkeys-lru策略。

2、allkeys-random: 如果我们的应用对于缓存key的访问概率相等,则可以使用这个策略。

3、volatile-ttl: 这种策略使得我们可以向Redis提示哪些key更适合被eviction。

另外,volatile-lru策略和volatile-random策略适合我们将一个Redis实例既应用于缓存和又应用于持久化存储的时候,然而我们也可以通过使用两个Redis实例来达到相同的效果,值得一提的是将key设置过期时间实际上会消耗更多的内存,因此我们建议使用allkeys-lru策略从而更有效率的使用内存。

以上就是redis缓存中实施数据淘汰策略的方法,看完之后是否有所收获呢?如果想了解更多相关内容,欢迎关注亿速云行业资讯,感谢各位的阅读。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-数据库
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯