文章详情

短信预约-IT技能 免费直播动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Pytorch实现逻辑回归分类

2024-04-02 19:55

关注

本文实例为大家分享了Pytorch实现逻辑回归分类的具体代码,供大家参考,具体内容如下

1、代码实现

步骤:

1.获得数据
2.建立逻辑回归模型
3.定义损失函数
4.计算损失函数
5.求解梯度
6.梯度更新
7.预测测试集

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torchvision.datasets as dataset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

input_size = 784  # 输入到逻辑回归模型中的输入大小
num_classes = 10  # 分类的类别个数
num_epochs = 10  # 迭代次数
batch_size = 50  # 批量训练个数
learning_rate = 0.01  # 学习率


# 下载训练数据和测试数据
train_dataset = dataset.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dataset.MNIST(root='./data',train=False, transform=transforms.ToTensor)

# 使用DataLoader形成批处理文件
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)

# 创建逻辑回归类模型  (sigmoid(wx+b))
class LogisticRegression(nn.Module):
    def __init__(self,input_size,num_classes):
        super(LogisticRegression,self).__init__()
        self.linear = nn.Linear(input_size,num_classes)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        out = self.linear(x)
        out = self.sigmoid(out)
        return out

# 设定模型参数
model = LogisticRegression(input_size, num_classes)
# 定义损失函数,分类任务,使用交叉熵
criterion = nn.CrossEntropyLoss()
# 优化算法,随机梯度下降,lr为学习率,获得模型需要更新的参数值
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)


# 使用训练数据训练模型
for epoch in range(num_epochs):
    # 批量数据进行模型训练
    for i, (images, labels) in enumerate(train_loader):
        # 需要将数据转换为张量Variable
        images = Variable(images.view(-1, 28*28))
        labels = Variable(labels)
        
        # 梯度更新前需要进行梯度清零
        optimizer.zero_grad()

        # 获得模型的训练数据结果
        outputs = model(images)
        
        # 计算损失函数用于计算梯度
        loss = criterion(outputs, labels)

        # 计算梯度
        loss.backward()
    
        # 进行梯度更新
        optimizer.step()

        # 每隔一段时间输出一个训练结果
        if (i+1) % 100 == 0:
            print('Epoch:[%d %d], Step:[%d/%d], Loss: %.4f' % (epoch+1,num_epochs,i+1,len(train_dataset)//batch_size,loss.item()))

# 训练好的模型预测测试数据集
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images.view(-1, 28*28))  # 形式为(batch_size,28*28)
    outputs = model(images)
    _,predicts = torch.max(outputs.data,1)  # _输出的是最大概率的值,predicts输出的是最大概率值所在位置,max()函数中的1表示维度,意思是计算某一行的最大值
    total += labels.size(0)
    correct += (predicts==labels).sum()

print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))

2、踩过的坑

1.在代码中下载训练数据和测试数据的时候,两段代码是有区别的:

train_dataset = dataset.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dataset.MNIST(root='./data',train=False, transform=transforms.ToTensor)

第一段代码中多了一个download=True,这个的作用是,如果为True,则从Internet下载数据集并将其存放在根目录中。如果数据已经下载,则不会再次下载。

在第二段代码中没有加download=True,加了的话在使用测试数据进行预测的时候会报错。

代码中transform=transforms.ToTensor()的作用是将PIL图像转换为Tensor,同时已经进行归一化处理。

2.代码中设置损失函数:

criterion = nn.CrossEntropyLoss()
loss = criterion(outputs, labels)

一开始的时候直接使用:

loss = nn.CrossEntropyLoss()
loss = loss(outputs, labels)

这样也会报错,因此需要将loss改为criterion。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯