效果
void lane_detection(cv::Mat &src, cv::Mat &dst)
{
dst = cv::Mat::zeros(src.size(),src.type());
cv::Mat grid =cv::Mat::zeros(src.size(),src.type());
int iStep = 25;
int iNUmsX = src.cols / iStep;
int inUmsY = src.rows / iStep;
for(int i = 1; i <= inUmsY; i++)
{
int yPos = i * iStep + src.cols / 5;
cv::Point2d pt1,pt2;
int iOffset = 10;
pt1.x = 0 + iOffset;
pt1.y = yPos;
pt2.x = src.cols - iOffset;
pt2.y = yPos;
cv::line(grid,pt1,pt2,cv::Scalar(255), 1, cv::LINE_4);
}
for(int i = 1; i <= iNUmsX; i++)
int xPos = i * iStep;
pt1.x = xPos;
pt1.y = 0 + iOffset + src.rows / 5;
pt2.x = xPos;
pt2.y = src.rows - iOffset;
cv::imshow("grid", grid);
cv::Mat bitNot;
cv::bitwise_and(src, grid, bitNot);
cv::Mat add = cv::Mat::zeros(bitNot.rows, bitNot.cols,bitNot.type());
int iDiffTh = 200;
QTime timer;
timer.start();
//#pragma omp parallel for num_threads(10)
for (int i = 1; i < bitNot.rows - 1; i++)
{
for (int j = 1; j < bitNot.cols - 1; j++)
{
int iValueX = (int)bitNot.at<uchar>(i, j);
int iValueXPre = (int)bitNot.at<uchar>(i-1, j);
int iValueXNext = (int)bitNot.at<uchar>(i+1, j);
int iValueY = (int)bitNot.at<uchar>(i, j);
int iValueYPre = (int)bitNot.at<uchar>(i, j-1);
int iValueYNext = (int)bitNot.at<uchar>(i, j+1);
if((iValueX - iValueXPre > iDiffTh && iValueX - iValueXNext > iDiffTh) ||
(iValueY - iValueYPre > iDiffTh && iValueY - iValueYNext > iDiffTh))
{
add.at<uchar>(i, j) = 255;
}
}
}
qDebug()<<"process time: "<<timer.elapsed()<<" ms";
//形态学预处理
cv::Mat matDilate;
cv::Mat k33 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(9, 9), cv::Point(-1, -1));
cv::morphologyEx(add, matDilate, cv::MORPH_DILATE, k33, cv::Point(-1, -1), 3);
cv::imshow("matDilate", matDilate);
//cv::bitwise_not(src, matDilate, matRoi);
cv::Mat matRoi;
cv::bitwise_and(src, matDilate, matRoi);
cv::imshow("matRoi", matRoi);
cv::Mat matThresh;
cv::threshold(matRoi, matThresh, 200, 255,cv::THRESH_BINARY);
cv::imshow("matThresh", matThresh);
//std::vector<std::vector<cv::Point>> contours;
//cv::findContours(matThresh,contours,)
std::vector<std::vector<cv::Point> > contoursDefect;
std::vector<cv::Vec4i> hierarchyDefect;
cv::Mat canves;
cv::cvtColor(src, canves,cv::COLOR_RGBA2RGB);
cv::findContours(matThresh, contoursDefect, hierarchyDefect, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);
for (size_t i = 0; i < contoursDefect.size(); i++)
{
cv::Mat contour(contoursDefect.at(i));//第i个轮廓
double area = contourArea(contour);
if (area >= 50)
cv::Moments moment;//矩
moment = moments(contour, false);
cv::Point2d pt1;
double m00 = moment.m00 + 0.01;
pt1.x = moment.m10 / m00;//计算重心横坐标
pt1.y = moment.m01 / m00;//计算重心纵坐标
cv::drawContours(canves, contoursDefect, i, cv::Scalar(255, 255, 0), -1);
}
cv::imshow("canves", canves);
cv::waitKey(0);
}
void test_lane_detection()
int i = 0;
while(1)
cv::Mat src;
QString dir("D:\\QtProject\\Opencv_Example\\gen_grid_region\\scene_");
QString path;
if(i>9) path = QString("%1%2%3").arg(dir).arg(i++).arg(".png");
else path = QString("%1%2%3%4").arg(dir).arg("0").arg(i++).arg(".png");
cout<<path.toStdString();
src = cv::imread(path.toStdString(), cv::IMREAD_GRAYSCALE);
if (src.empty()) {
cout << "Cannot load image" << endl;
return;
}
cv::imshow("src", src);
cv::Mat dst;
lane_detection(src, dst);
到此这篇关于opencv车道线检测实战的文章就介绍到这了,更多相关opencv车道线检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!