文章详情

短信预约信息系统项目管理师 报名、考试、查分时间动态提醒

请输入下面的图形验证码

提交验证

短信预约提醒成功

Python道路车道线检测的实现

2022-06-02 22:47

关注

车道线检测是自动驾驶汽车以及一般计算机视觉的关键组件。这个概念用于描述自动驾驶汽车的路径并避免进入另一条车道的风险。

在本文中,我们将构建一个机器学习项目来实时检测车道线。我们将使用 OpenCV 库使用计算机视觉的概念来做到这一点。为了检测车道,我们必须检测车道两侧的白色标记。

在这里插入图片描述

使用 Python 和 OpenCV 进行道路车道线检测
使用 Python 中的计算机视觉技术,我们将识别自动驾驶汽车必须行驶的道路车道线。这将是自动驾驶汽车的关键部分,因为自动驾驶汽车不应该越过它的车道,也不应该进入对面车道以避免事故。

帧掩码和霍夫线变换
要检测车道中的白色标记,首先,我们需要屏蔽帧的其余部分。我们使用帧屏蔽来做到这一点。该帧只不过是图像像素值的 NumPy 数组。为了掩盖帧中不必要的像素,我们只需将 NumPy 数组中的这些像素值更新为 0。

制作后我们需要检测车道线。用于检测此类数学形状的技术称为霍夫变换。霍夫变换可以检测矩形、圆形、三角形和直线等形状。

代码下载
源码请下载:车道线检测项目代码

按照以下步骤在 Python 中进行车道线检测:

1.导入包


import matplotlib.pyplot as plt

import numpy as np
import cv2
import os
import matplotlib.image as mpimg
from moviepy.editor import VideoFileClip
import math

2. 应用帧屏蔽并找到感兴趣的区域:


def interested_region(img, vertices):
    if len(img.shape) > 2: 
        mask_color_ignore = (255,) * img.shape[2]
    else:
        mask_color_ignore = 255
        
    cv2.fillPoly(np.zeros_like(img), vertices, mask_color_ignore)
    return cv2.bitwise_and(img, np.zeros_like(img))

3.霍夫变换空间中像素到线的转换:


def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
    lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
    line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
    lines_drawn(line_img,lines)
    return line_img

4. 霍夫变换后在每一帧中创建两条线:


def lines_drawn(img, lines, color=[255, 0, 0], thickness=6):
    global cache
    global first_frame
    slope_l, slope_r = [],[]
    lane_l,lane_r = [],[]

    α =0.2 
  for line in lines:
        for x1,y1,x2,y2 in line:
            slope = (y2-y1)/(x2-x1)
            if slope > 0.4:
                slope_r.append(slope)
                lane_r.append(line)
            elif slope < -0.4:
                slope_l.append(slope)
                lane_l.append(line)
        img.shape[0] = min(y1,y2,img.shape[0])
    if((len(lane_l) == 0) or (len(lane_r) == 0)):
        print ('no lane detected')
        return 1
    slope_mean_l = np.mean(slope_l,axis =0)
    slope_mean_r = np.mean(slope_r,axis =0)
    mean_l = np.mean(np.array(lane_l),axis=0)
    mean_r = np.mean(np.array(lane_r),axis=0)
    
    if ((slope_mean_r == 0) or (slope_mean_l == 0 )):
        print('dividing by zero')
        return 1
    
    x1_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l) 
    x2_l = int((img.shape[0] - mean_l[0][1] - (slope_mean_l * mean_l[0][0]))/slope_mean_l)   
    x1_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)
    x2_r = int((img.shape[0] - mean_r[0][1] - (slope_mean_r * mean_r[0][0]))/slope_mean_r)
    
   
    if x1_l > x1_r:
        x1_l = int((x1_l+x1_r)/2)
        x1_r = x1_l
        y1_l = int((slope_mean_l * x1_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))
        y1_r = int((slope_mean_r * x1_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))
        y2_l = int((slope_mean_l * x2_l ) + mean_l[0][1] - (slope_mean_l * mean_l[0][0]))
        y2_r = int((slope_mean_r * x2_r ) + mean_r[0][1] - (slope_mean_r * mean_r[0][0]))
    else:
        y1_l = img.shape[0]
        y2_l = img.shape[0]
        y1_r = img.shape[0]
        y2_r = img.shape[0]
      
    present_frame = np.array([x1_l,y1_l,x2_l,y2_l,x1_r,y1_r,x2_r,y2_r],dtype ="float32")
    
    if first_frame == 1:
        next_frame = present_frame        
        first_frame = 0        
    else :
        prev_frame = cache
        next_frame = (1-α)*prev_frame+α*present_frame
             
    cv2.line(img, (int(next_frame[0]), int(next_frame[1])), (int(next_frame[2]),int(next_frame[3])), color, thickness)
    cv2.line(img, (int(next_frame[4]), int(next_frame[5])), (int(next_frame[6]),int(next_frame[7])), color, thickness)
    
    cache = next_frame

5.处理每一帧视频以检测车道:


def weighted_img(img, initial_img, α=0.8, β=1., λ=0.):
    return cv2.addWeighted(initial_img, α, img, β, λ)


def process_image(image):

    global first_frame

    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    img_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)


    lower_yellow = np.array([20, 100, 100], dtype = "uint8")
    upper_yellow = np.array([30, 255, 255], dtype="uint8")

    mask_yellow = cv2.inRange(img_hsv, lower_yellow, upper_yellow)
    mask_white = cv2.inRange(gray_image, 200, 255)
    mask_yw = cv2.bitwise_or(mask_white, mask_yellow)
    mask_yw_image = cv2.bitwise_and(gray_image, mask_yw)

    gauss_gray= cv2.GaussianBlur(mask_yw_image, (5, 5), 0)

    canny_edges=cv2.Canny(gauss_gray, 50, 150)

    imshape = image.shape
    lower_left = [imshape[1]/9,imshape[0]]
    lower_right = [imshape[1]-imshape[1]/9,imshape[0]]
    top_left = [imshape[1]/2-imshape[1]/8,imshape[0]/2+imshape[0]/10]
    top_right = [imshape[1]/2+imshape[1]/8,imshape[0]/2+imshape[0]/10]
    vertices = [np.array([lower_left,top_left,top_right,lower_right],dtype=np.int32)]
    roi_image = interested_region(canny_edges, vertices)

    theta = np.pi/180

    line_image = hough_lines(roi_image, 4, theta, 30, 100, 180)
    result = weighted_img(line_image, image, α=0.8, β=1., λ=0.)
    return result

6. 将输入视频剪辑成帧并得到结果输出视频文件:


first_frame = 1
white_output = '__path_to_output_file__'
clip1 = VideoFileClip("__path_to_input_file__")
white_clip = clip1.fl_image(process_image)
white_clip.write_videofile(white_output, audio=False)

车道线检测项目 GUI 代码:

在这里插入图片描述


import tkinter as tk
from tkinter import *
import cv2
from PIL import Image, ImageTk
import os
import numpy as np


global last_frame1                                   
last_frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
global last_frame2                                      
last_frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
global cap1
global cap2
cap1 = cv2.VideoCapture("path_to_input_test_video")
cap2 = cv2.VideoCapture("path_to_resultant_lane_detected_video")

def show_vid():                                       
    if not cap1.isOpened():                             
        print("cant open the camera1")
    flag1, frame1 = cap1.read()
    frame1 = cv2.resize(frame1,(400,500))
    if flag1 is None:
        print ("Major error!")
    elif flag1:
        global last_frame1
        last_frame1 = frame1.copy()
        pic = cv2.cvtColor(last_frame1, cv2.COLOR_BGR2RGB)     
        img = Image.fromarray(pic)
        imgtk = ImageTk.PhotoImage(image=img)
        lmain.imgtk = imgtk
        lmain.configure(image=imgtk)
        lmain.after(10, show_vid)


def show_vid2():
    if not cap2.isOpened():                             
        print("cant open the camera2")
    flag2, frame2 = cap2.read()
    frame2 = cv2.resize(frame2,(400,500))
    if flag2 is None:
        print ("Major error2!")
    elif flag2:
        global last_frame2
        last_frame2 = frame2.copy()
        pic2 = cv2.cvtColor(last_frame2, cv2.COLOR_BGR2RGB)
        img2 = Image.fromarray(pic2)
        img2tk = ImageTk.PhotoImage(image=img2)
        lmain2.img2tk = img2tk
        lmain2.configure(image=img2tk)
        lmain2.after(10, show_vid2)

if __name__ == '__main__':
    root=tk.Tk()                                     
    lmain = tk.Label(master=root)
    lmain2 = tk.Label(master=root)

    lmain.pack(side = LEFT)
    lmain2.pack(side = RIGHT)
    root.title("Lane-line detection")            
    root.geometry("900x700+100+10") 
    exitbutton = Button(root, text='Quit',fg="red",command=   root.destroy).pack(side = BOTTOM,)
    show_vid()
    show_vid2()
    root.mainloop()                                  
    cap.release()

到此这篇关于Python道路车道线检测的实现的文章就介绍到这了,更多相关Python 道路车道线检测内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

阅读原文内容投诉

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

软考中级精品资料免费领

  • 历年真题答案解析
  • 备考技巧名师总结
  • 高频考点精准押题
  • 2024年上半年信息系统项目管理师第二批次真题及答案解析(完整版)

    难度     813人已做
    查看
  • 【考后总结】2024年5月26日信息系统项目管理师第2批次考情分析

    难度     354人已做
    查看
  • 【考后总结】2024年5月25日信息系统项目管理师第1批次考情分析

    难度     318人已做
    查看
  • 2024年上半年软考高项第一、二批次真题考点汇总(完整版)

    难度     435人已做
    查看
  • 2024年上半年系统架构设计师考试综合知识真题

    难度     224人已做
    查看

相关文章

发现更多好内容

猜你喜欢

AI推送时光机
位置:首页-资讯-后端开发
咦!没有更多了?去看看其它编程学习网 内容吧
首页课程
资料下载
问答资讯