我就废话不多说了,大家还是直接看代码吧~
def sq2(x,e):
e = e #误差范围
low= 0
high = max(x,1.0) #处理大于0小于1的数
guess = (low + high) / 2.0
ctr = 1
while abs(guess**2 - x) > e and ctr<= 1000:
if guess**2 < x:
low = guess
else:
high = guess
guess = (low + high) / 2.0
ctr += 1
print(guess)
补充:数值计算方法:二分法求解方程的根(伪代码 python c/c++)
数值计算方法:
二分法求解方程的根
伪代码
fun (input x)
return x^2+x-6
newton (input a, input b, input e)
//a是区间下界,b是区间上界,e是精确度
x <- (a + b) / 2
if abs(b - 1) < e:
return x
else:
if fun(a) * fun(b) < 0:
return newton(a, x, e)
else:
return newton(x, b, e)
c/c++:
#include <iostream>
#include <cmath>
using namespace std;
double fun (double x);
double newton (double a, double b,double e);
int main()
{
cout << newton(-5,0,0.5e-5);
return 0;
}
double fun(double x)
{
return pow(x,2)+x-6;
}
double newton (double a, double b, double e)
{
double x;
x = (a + b)/2;
cout << x << endl;
if ( abs(b-a) < e)
return x;
else
if (fun(a)*fun(x) < 0)
return newton(a,x,e);
else
return newton(x,b,e);
}
python:
def fun(x):
return x ** 2 + x - 6
def newton(a,b,e):
x = (a + b)/2.0
if abs(b-a) < e:
return x
else:
if fun(a) * fun(x) < 0:
return newton(a, x, e)
else:
return newton(x, b, e)
print newton(-5, 0, 5e-5)
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。如有错误或未考虑完全的地方,望不吝赐教。