笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情。上篇博客讲了socket的阻塞和非阻塞,这篇就开始谈一谈socket的close(以tcp为例且基于linux-2.6.24内核版本)
TCP关闭状态转移图:
众所周知,TCP的close过程是四次挥手,状态机的变迁也逃不出TCP状态转移图,如下图所示:
tcp的关闭主要分主动关闭、被动关闭以及同时关闭(特殊情况,不做描述)
主动关闭
close(fd)的过程
以C语言为例,在我们关闭socket的时候,会使用close(fd)函数:
- int socket_fd;
- socket_fd = socket(AF_INET, SOCK_STREAM, 0);
- ...
- // 此处通过文件描述符关闭对应的socket
- close(socket_fd)
而close(int fd)又是通过系统调用sys_close来执行的:
- asmlinkage long sys_close(unsigned int fd)
- {
- // 清除(close_on_exec即退出进程时)的位图标记
- FD_CLR(fd, fdt->close_on_exec);
- // 释放文件描述符
- // 将fdt->open_fds即打开的fd位图中对应的位清除
- // 再将fd挂入下一个可使用的fd以便复用
- __put_unused_fd(files, fd);
- // 调用file_pointer的close方法真正清除
- retval = filp_close(filp, files);
- }
我们看到最终是调用的filp_close方法:
- int filp_close(struct file *filp, fl_owner_t id)
- {
- // 如果存在flush方法则flush
- if (filp->f_op && filp->f_op->flush)
- filp->f_op->flush(filp, id);
- // 调用fput
- fput(filp);
- ......
- }
紧接着我们进入fput:
- void fastcall fput(struct file *file)
- {
- // 对应file->count--,同时检查是否还有关于此file的引用
- // 如果没有,则调用_fput进行释放
- if (atomic_dec_and_test(&file->f_count))
- __fput(file);
- }
同一个file(socket)有多个引用的情况很常见,例如下面的例子:
所以在多进程的socket服务器编写过程中,父进程也需要close(fd)一次,以免socket无法最终关闭
然后就是_fput函数了:
- void fastcall __fput(struct file *file)
- {
- // 从eventpoll中释放file
- eventpoll_release(file);
- // 如果是release方法,则调用release
- if (file->f_op && file->f_op->release)
- file->f_op->release(inode, file);
- }
由于我们讨论的是socket的close,所以,我们现在探查下file->f_op->release在socket情况下的实现:
f_op->release的赋值
我们跟踪创建socket的代码,即
- socket(AF_INET, SOCK_STREAM, 0);
- |-sock_create // 创建sock
- |-sock_map_fd // 将sock和fd关联
- |-sock_attach_fd
- |-init_file(file,...,&socket_file_ops);
- |-file->f_op = fop; //fop赋值为socket_file_ops
socket_file_ops的实现为:
- static const struct file_operations socket_file_ops = {
- .owner = THIS_MODULE,
- ......
- // 我们在这里只考虑sock_close
- .release = sock_close,
- ......
- };
继续跟踪:
- sock_close
- |-sock_release
- |-sock->ops->release(sock);
在上一篇博客中,我们知道sock->ops为下图所示:
即(在这里我们仅考虑tcp,即sk_prot=tcp_prot):
- inet_stream_ops->release
- |-inet_release
- |-sk->sk_prot->close(sk, timeout);
- |-tcp_prot->close(sk, timeout);
- |->tcp_prot.tcp_close
关于fd与socket的关系如下图所示:
上图中红色线标注的是close(fd)的调用链
tcp_close
- void tcp_close(struct sock *sk, long timeout)
- {
- if (sk->sk_state == TCP_LISTEN) {
- // 如果是listen状态,则直接设为close状态
- tcp_set_state(sk, TCP_CLOSE);
- }
- // 清空掉recv.buffer
- ......
- // SOCK_LINGER选项的处理
- ......
- else if (tcp_close_state(sk)){
- // tcp_close_state会将sk从established状态变为fin_wait1
- // 发送fin包
- tcp_send_fin(sk);
- }
- ......
- }
四次挥手
现在就是我们的四次挥手环节了,其中上半段的两次挥手下图所示:
首先,在tcp_close_state(sk)中已经将状态设置为fin_wait1,并调用tcp_send_fin
- void tcp_send_fin(struct sock *sk)
- {
- ......
- // 这边设置flags为ack和fin
- TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
- ......
- // 发送fin包,同时关闭nagle
- __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
- }
如上图Step1所示。
接着,主动关闭的这一端等待对端的ACK,如果ACK回来了,就设置TCP状态为FIN_WAIT2,如上图Step2所示,具体代码如下:
- tcp_v4_do_rcv
- |-tcp_rcv_state_process
- int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, struct tcphdr *th, unsigned len)
- {
- ......
-
- if (th->ack) {
- ...
- case TCP_FIN_WAIT1:
- // 这处判断是确认此ack是发送Fin包对应的那个ack
- if (tp->snd_una == tp->write_seq) {
- // 设置为FIN_WAIT2状态
- tcp_set_state(sk, TCP_FIN_WAIT2);
- ......
- // 设定TCP_FIN_WAIT2定时器,将在tmo时间到期后将状态变迁为TIME_WAIT
- // 不过是这时候改的已经是inet_timewait_sock了
- tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
- ......
- }
- }
-
- switch(sk->sk_state) {
- case TCP_FIN_WAIT1:
- case TCP_FIN_WAIT2:
- ......
- case TCP_ESTABLISHED:
- tcp_data_queue(sk, skb);
- queued = 1;
- break;
- }
- .....
- }
值的注意的是,从TCP_FIN_WAIT1变迁到TCP_FIN_WAIT2之后,还调用tcp_time_wait设置一个TCP_FIN_WAIT2定时器,在tmo+(2MSL或者基于RTO计算超时)超时后会直接变迁到closed状态(不过此时已经是inet_timewait_sock了)。这个超时时间可以配置,如果是ipv4的话,则可以按照下列配置:
- net.ipv4.tcp_fin_timeout
- /sbin/sysctl -w net.ipv4.tcp_fin_timeout=30
如下图所示:
有这样一步的原因是防止对端由于种种原因始终没有发送fin,防止一直处于FIN_WAIT2状态。
接着在FIN_WAIT2状态等待对端的FIN,完成后面两次挥手:
由Step1和Step2将状态置为了FIN_WAIT_2,然后接收到对端发送的FIN之后,将会将状态设置为time_wait,如下代码所示:
- tcp_v4_do_rcv
- |-tcp_rcv_state_process
- |-tcp_data_queue
- |-tcp_fin
- static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
- {
- switch (sk->sk_state) {
- ......
- case TCP_FIN_WAIT1:
- // 这边是处理同时关闭的情况
- tcp_send_ack(sk);
- tcp_set_state(sk, TCP_CLOSING);
- break;
- case TCP_FIN_WAIT2:
-
- // 收到FIN之后,发送ACK同时将状态进入TIME_WAIT
- tcp_send_ack(sk);
- tcp_time_wait(sk, TCP_TIME_WAIT, 0);
- }
- }
time_wait状态时,原socket会被destroy,然后新创建一个inet_timewait_sock,这样就能及时的将原socket使用的资源回收。而inet_timewait_sock被挂入一个bucket中,由
inet_twdr_twcal_tick定时从bucket中将超过(2MSL或者基于RTO计算的时间)的time_wait的实例删除。
我们来看下tcp_time_wait函数
- void tcp_time_wait(struct sock *sk, int state, int timeo)
- {
- // 建立inet_timewait_sock
- tw = inet_twsk_alloc(sk, state);
- // 放到bucket的具体位置等待定时器删除
- inet_twsk_schedule(tw, &tcp_death_row, time,TCP_TIMEWAIT_LEN);
- // 设置sk状态为TCP_CLOSE,然后回收sk资源
- tcp_done(sk);
- }
具体的定时器操作函数为inet_twdr_twcal_tick,这边就不做描述了
被动关闭
close_wait
在tcp的socket时候,如果是established状态,接收到了对端的FIN,则是被动关闭状态,会进入close_wait状态,如下图Step1所示:
具体代码如下所示:
- tcp_rcv_state_process
- |-tcp_data_queue
- static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
- {
- ...
- if (th->fin)
- tcp_fin(skb, sk, th);
- ...
- }
我们再看下tcp_fin
- static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
- {
- ......
- // 这一句表明当前socket有ack需要发送
- inet_csk_schedule_ack(sk);
- ......
- switch (sk->sk_state) {
- case TCP_SYN_RECV:
- case TCP_ESTABLISHED:
-
- // 状态设置程close_wait状态
- tcp_set_state(sk, TCP_CLOSE_WAIT);
- // 这一句表明,当前fin可以延迟发送
- // 即和后面的数据一起发送或者定时器到时后发送
- inet_csk(sk)->icsk_ack.pingpong = 1;
- break;
- }
- ......
- }
这边有意思的点是,收到对端的fin之后并不会立即发送ack告知对端收到了,而是等有数据携带一块发送,或者等携带重传定时器到期后发送ack。
如果对端关闭了,应用端在read的时候得到的返回值是0,此时就应该手动调用close去关闭连接
- if(recv(sockfd, buf, MAXLINE,0) == 0){
- close(sockfd)
- }
我们看下recv是怎么处理fin包,从而返回0的,上一篇博客可知,recv最后调用tcp_rcvmsg,由于比较复杂,我们分两段来看:
tcp_recvmsg第一段
- ......
- // 从接收队列里面获取一个sk_buffer
- skb = skb_peek(&sk->sk_receive_queue);
- do {
- // 如果已经没有数据,直接跳出读取循环,返回0
- if (!skb)
- break;
- ......
- // *seq表示已经读到多少seq
- // TCP_SKB_CB(skb)->seq表示当前sk_buffer的起始seq
- // offset即是在当前sk_buffer中已经读取的长度
- offset = *seq - TCP_SKB_CB(skb)->seq;
- // syn处理
- if (tcp_hdr(skb)->syn)
- offset--;
- // 此处判断表示,当前skb还有数据可读,跳转found_ok_skb
- if (offset < skb->len)
- goto found_ok_skb;
- // 处理fin包的情况
- // offset == skb->len,跳转到found_fin_ok然后跳出外面的大循环
- // 并返回0
- if (tcp_hdr(skb)->fin)
- goto found_fin_ok;
- BUG_TRAP(flags & MSG_PEEK);
- skb = skb->next;
- } while (skb != (struct sk_buff *)&sk->sk_receive_queue);
- ......
上面代码的处理过程如下图所示:
我们看下tcp_recmsg的第二段:
- found_ok_skb:
- // tcp已读seq更新
- *seq += used;
- // 这次读取的数量更新
- copied += used;
- // 如果还没有读到当前sk_buffer的尽头,则不检测fin标识
- if (used + offset < skb->len)
- continue;
- // 如果发现当前skb有fin标识,去found_fin_ok
- if (tcp_hdr(skb)->fin)
- goto found_fin_ok;
- ......
- found_fin_ok:
-
- // tcp已读seq++
- ++*seq;
- ...
- break;
- } while(len > 0);
由上面代码可知,一旦当前skb读完了而且携带有fin标识,则不管有没有读到用户期望的字节数量都会返回已读到的字节数。下一次再读取的时候则在刚才描述的tcp_rcvmsg上半段直接不读取任何数据再跳转到found_fin_ok并返回0。这样应用就能感知到对端已经关闭了。
如下图所示:
last_ack
应用层在发现对端关闭之后已经是close_wait状态,这时候再调用close的话,会将状态改为last_ack状态,并发送本端的fin,如下代码所示:
- void tcp_close(struct sock *sk, long timeout)
- {
- ......
- else if (tcp_close_state(sk)){
- // tcp_close_state会将sk从close_wait状态变为last_ack
- // 发送fin包
- tcp_send_fin(sk);
- }
- }
在接收到主动关闭端的last_ack之后,则调用tcp_done(sk)设置sk为tcp_closed状态,并回收sk的资源,如下代码所示:
- tcp_v4_do_rcv
- |-tcp_rcv_state_process
- int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, struct tcphdr *th, unsigned len)
- {
- ......
-
- if (th->ack) {
- ...
- case TCP_LAST_ACK:
- // 这处判断是确认此ack是发送Fin包对应的那个ack
- if (tp->snd_una == tp->write_seq) {
- tcp_update_metrics(sk);
- // 设置socket为closed,并回收socket的资源
- tcp_done(sk);
- goto discard;
- }
- ...
- }
- }
上述代码就是被动关闭端的后两次挥手了,如下图所示:
出现大量close_wait的情况
linux中出现大量close_wait的情况一般是应用在检测到对端fin时没有及时close当前连接。有一种可能如下图所示:
当出现这种情况,通常是minIdle之类参数的配置不对(如果连接池有定时收缩连接功能的话)。给连接池加上心跳也可以解决这种问题。
如果应用close的时间过晚,对端已经将连接给销毁。则应用发送给fin给对端,对端会由于找不到对应的连接而发送一个RST(Reset)报文。
操作系统何时回收close_wait
如果应用迟迟没有调用close_wait,那么操作系统有没有一个回收机制呢,答案是有的。
tcp本身有一个包活(keep alive)定时器,在(keep alive)定时器超时之后,会强行将此连接关闭。可以设置tcp keep alive的时间
- /etc/sysctl.conf
- net.ipv4.tcp_keepalive_intvl = 75
- net.ipv4.tcp_keepalive_probes = 9
- net.ipv4.tcp_keepalive_time = 7200
默认值如上面所示,设置的很大,7200s后超时,如果想快速回收close_wait可以设置小一点。但最终解决方案还是得从应用程序着手。
关于tcp keepalive包活定时器可见笔者另一篇博客:
https://my.oschina.net/alchemystar/blog/833981
进程关闭时清理socket资源
进程在退出时候(无论kill,kill -9 或是正常退出)都会关闭当前进程中所有的fd(文件描述符)
- do_exit
- |-exit_files
- |-__exit_files
- |-close_files
- |-filp_close
这样我们又回到了博客伊始的filp_close函数,对每一个是socket的fd发送send_fin
Java GC时清理socket资源
Java的socket最终关联到AbstractPlainSocketImpl,且其重写了object的finalize方法
- abstract class AbstractPlainSocketImpl extends SocketImpl
- {
- ......
-
- protected void finalize() throws IOException {
- close()
- }
- ......
- }
所以Java会在GC时刻会关闭没有被引用的socket,但是切记不要寄希望于Java的GC,因为GC时刻并不是以未引用的socket数量来判断的,所以有可能泄露了一堆socket,但仍旧没有触发GC。
总结
linux内核源代码博大精深,阅读其代码很费周折。之前读\<\>的时候由于有先辈引导和梳理,所以看书中所使用的BSD源码并不觉得十分费劲。直到现在自己带着问题独立看linux源码的时候,尽管有之前的基础,仍旧被其中的各种细节所迷惑。希望笔者这篇文章能帮助到阅读linux网络协议栈代码的人。
原文链接
https://my.oschina.net/alchemystar/blog/1821680
本文转载自微信公众号「解Bug之路」,可以通过以下二维码关注。转载本文请联系解Bug之路公众号。